

18 December 2025

139.45m OF HIGH-GRADE RARE EARTHS AND NIOBIUM FROM SURFACE – NEW THICKEST INTERCEPT AT ARAXÁ

Potential scale of Araxá's world-class Mineral Resource continues to be redefined by exceptional drill intersections from surface

- Best ever intercept at Araxá has been returned in the latest diamond drill assays:
 - 139.45m @ 4.05% TREO and 0.55% Nb₂O₅ from surface in AXDD004 including:
 - 53.9m @ 5.44% TREO and 0.79% Nb₂O₅ from 9m
- Assays for a further nine diamond drill holes have been received with thick, high-grade mineralisation from surface including¹:
 - 80.15m @ 5.11% TREO and 0.76% Nb₂O₅ from surface in AXDD007 including:
 - 43.9m @ 6.18% TREO and 1.05% Nb₂O₅ from 36.2m
 - 82.55m @ 3.90% TREO and 0.59% Nb₂O₅ from surface in AXDD014 including:
 - 56.55m @ 4.97% TREO and 0.72% Nb₂O₅ from 26m
 - 81.45m @ 4.52% TREO and 0.56% Nb₂O₅ from surface in AXDD018 including:
 - 4.55m @ 8.87% TREO and 0.78% Nb₂O₅ from 21.45m
- Scale of the Araxá resource is being redefined: The extensive high-grade mineralisation over very broad intervals being intersected both within and outside the envelope of the current Mineral Resource Estimate points to the potential for a very large increase in the volume of the Araxá resource already the largest and highest-grade carbonatite-hosted REE resource in South America and second-highest grade REE resource in the Western world².
- Mineral system remains open: High-grade mineralisation is open in all directions, including at depth; expansion drilling continues 24/7 with the drill campaign extending into 2026 indefinitely.

St George Mining Limited (ASX: SGQ) ("St George" or the "Company") is pleased to report further outstanding assay results from ongoing diamond drilling at its 100%-owned Araxá Rare Earths and Niobium Project in Minas Gerais, Brazil.

John Prineas, St George Mining's Executive Chairman, said:

"The drilling results continue to confirm world-class mineralisation, demonstrating exceptionally high grades over huge true widths.

- 1. See Tables 1, 2 and 3 for details of the latest drill holes and assays.
- 2. See Table 4 and our ASX Release dated 1 April 2025 'High-Grade Niobium and REE JORC Resource for Araxa' for more information on the Mineral Resource Estimate

"These ongoing remarkable results are indicating strong potential for a very substantial increase to the overall tonnage of the Araxá MRE that could further entrench Araxá's position as a globally significant niobium and rare earths deposit.

"Significantly, drilling continues to show that the mineral system is open and extends beyond the current defined limits. That makes our decision to extend the drill program into 2026 an easy one – the opportunity to grow the resource and add substantial value to the project.

"The resource at Araxá commences from surface – a real point of difference between our deposit and other emerging niobium and rare earths developers. The potential commercial advantage of having such a favourable deposit cannot be underestimated.

"We look forward to keeping shareholders updated over coming weeks as we receive further assay results and continue to advance our work at Araxá."

Best ever intercept

The result for AXDD004 – the thickest intersection to date of high-grade mineralisation – demonstrates that ongoing drilling has potential to deliver much more high-grade mineralisation within and outside the footprint of the already world-class resource at Araxá.

This provides confidence that the current drill program can deliver a major re-rating for St George through a very large expansion of the Araxá MRE.

The latest drilling confirms the Araxá mineralisation continues to be rich in magnet rare earths, with a NdPr:TREO ratio around 20%, in line with the existing MRE.

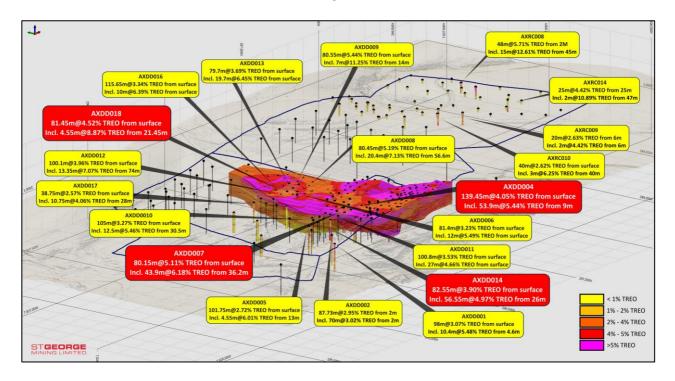


Figure 1 – oblique section showing some of the latest diamond drill holes as well as other significant drilling completed in the current campaign. The latest drill holes are shown with red labels.

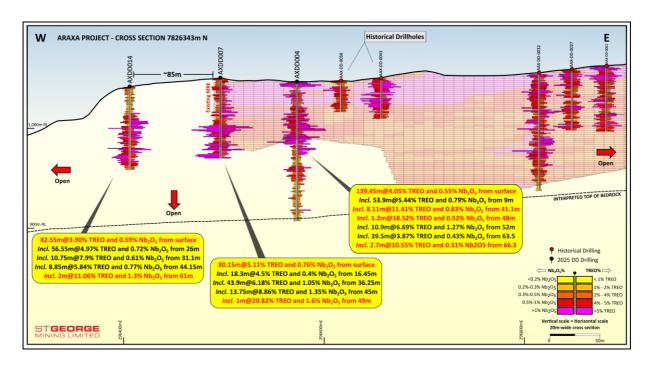


Figure 2 – section showing high-grade TREO intercepts (cut-off 1% TREO) and high-grade Nb₂O₅ intercepts (cut-off 0.2% Nb₂O₅) along with the existing MRE outline, showing both in-fill drilling and the westward expansion of the existing MRE.

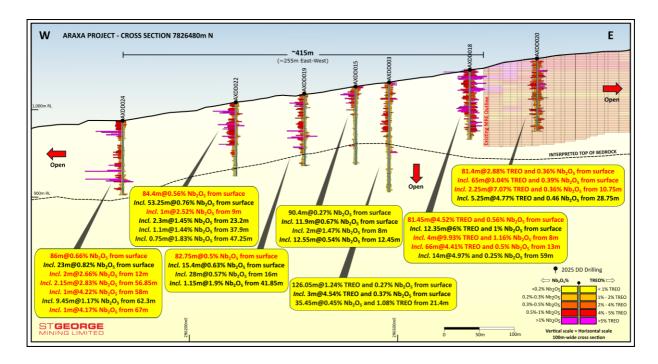


Figure 3 – section showing high-grade TREO intercepts (cut-off 1% TREO) and high-grade Nb₂O₅ intercepts (cut-off 0.2% Nb₂O₅) along with the existing MRE outline, showing the westward expansion of the existing MRE.

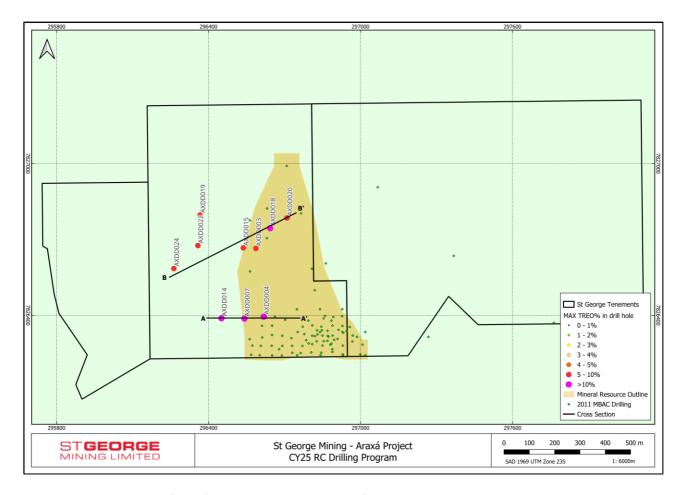


Figure 4 – plan view map of Araxá area showing the location of the diamond drilling relative to the MRE, and the sections in Figures 2 and 3 above.

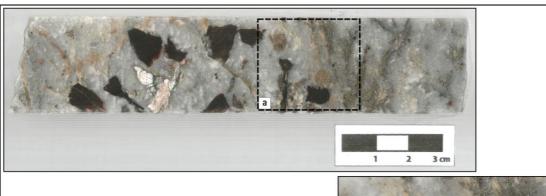
Primary pyrochlore mineralisation identified in diamond drill core

The identification of primary pyrochlore within the carbonatite units at the Araxá Project is a significant technical milestone, providing direct visual confirmation of the host mineralogy for Niobium (Nb).

The presence of disseminated, subhedral pyrochlore crystals within a carbonatite dolomite matrix indicates a stable magmatic mineralising environment, which is a key driver for grade continuity across the carbonatite complex.

This observation confirms that the Niobium is hosted within the primary rock fabric, providing a clear geological framework for the distribution of high-grade mineralisation within the project area.

Crucially, this intercept, located outside of the existing MRE, demonstrates that mineralisation remains open and is present within the fresh rock (primary source). This provides a strong basis for further exploration targeting the primary carbonatite, representing a significant potential expansion of the project's economic footprint.


The presence of pyrochlore in the "source" rock is fundamental to the development of the high-grade supergene enrichment zones at Araxá.

Page 5 of 14

As the carbonatite undergoes intense tropical weathering, the dolomite matrix is dissolved while the chemically resistant and dense pyrochlore remains, becoming progressively concentrated in the residual saprolitic regolith. This process can upgrade Niobium content by several orders of magnitude, and the confirmation of a robust primary source at Araxá bodes well for the continued discovery of high-grade enriched zones across the project tenure.

The coarse-grained nature of the pyrochlore within a carbonate groundmass suggests favourable metallurgical properties for mineral liberation. These characteristics, if further replicated, can support the potential for a large-scale resource and provide the technical foundation to increase geological confidence levels as the Company works toward an expanded JORC-compliant resource estimate.

a) Holocrystalline dolomite carbonatite (beforsite) characterised by a medium- to coarse-grained saccharoidal dolomite matrix.

The lithotype features prominent centimetric phlogopite (Phl) 'books' and disseminated subhedral crystals of **pyrochlore (Pcl)**, indicating a primary magmatic origin for both phases. A late-stage hydrothermal event is evidenced by fine, brassy pyrrhotite (Pyh) stringers forming an irregular, anastomosing network that cross-cuts the primary carbonatite fabric.

Fine-grained magnetite occurs as a ubiquitous accessory phase, frequently clustered as inclusions or along phlogopite margins.

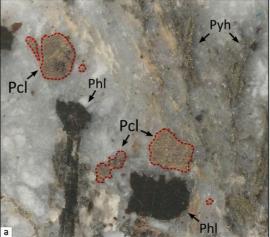


Figure 5 – Pyrochlore occurrence within carbonatite, intercepted in drillhole AXDD019 at the depth of 79.1m.^{3,4}

³ Visual identification of minerals and their abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

⁴ Visual identification of pyrochlore in this announcement is supported by laboratory assays for the interval 77m to 81.6m as detailed below in Table 3 – List of significant intercepts from diamond drilling (cut-off grade of 0.2% Nb2O5).

Table 1 – Drill hole details for the diamond holes reported in this announcement.

HOLEID	EASTING	NORTHING	ELEVATION	DEPTH	DIP	AZIMUTH
AXDD003	296541.71	7826619.18	1031.40	126.05	-90.00	0.00
AXDD004	296572.92	7826349.42	1046.74	139.45	-90.00	0.00
AXDD007	296496.52	7826341.84	1050.14	80.15	-90.00	0.00
AXDD014	296405.90	7826343.06	1041.30	82.55	-90.00	0.00
AXDD015	296491.90	7826621.51	1027.18	90.40	-90.00	0.00
AXDD018	296598.11	7826699.19	1047.24	81.45	-90.00	0.00
AXDD019	296321.43	7826751.27	1018.23	82.75	-90.00	0.00
AXDD020	296664.72	7826739.68	1056.82	81.40	-90.00	0.00
AXDD022	296312.83	7826630.56	1008.05	84.40	-90.00	0.00
AXDD024	296217.89	7826539.68	987.82	86.00	-90.00	0.00

Table 2 – List of significant intercepts from diamond drilling (cut-off grade of 1% TREO)

HOLEID	FROM	ТО	INTERVAL	TYPE	TREO%	MREO%	NdPr:TREO	Nb ₂ O ₅ %
AXDD003	0	126.05	126.05	@	1.24	0.27	22	0.27
AXDD003	0.00	3.00	3.00	Incl.	4.54	0.88	19.03	0.37
AXDD003	0	6.35	6.35	Incl.	3.31	0.66	20	0.45
AXDD003	0	1	1	Incl.	5.08	0.89	17	0.43
AXDD003	2	3	1	Incl.	5.27	1.10	21	0.40
AXDD003	7.06	13.55	6.49	Incl.	2.54	0.52	20	0.25
AXDD003	11.57	13.55	1.98	Incl.	3.80	0.77	20.23	0.25
AXDD003	13.85	25.4	11.55	Incl.	2.35	0.56	23	0.40
AXDD003	18.51	19.4	0.89	Incl.	5.81	1.41	24	0.92
AXDD003	34	38	4	Incl.	1.38	0.36	26	0.53
AXDD003	51.15	55.1	3.95	Incl.	1.34	0.36	26	0.65
AXDD003	60.85	62.42	1.57	Incl.	1.50	0.37	24	0.52
AXDD003	73	75	2	Incl.	1.97	0.31	16	0.21
AXDD003	79.16	80.85	1.69	Incl.	5.36	0.80	15	0.21
AXDD003	80	80.85	0.85	Incl.	5.87	0.84	14	0.14
AXDD003	99	100	1	Incl.	1.97	0.34	17	0.27
AXDD003	102	103.93	1.93	Incl.	1.05	0.24	22	0.11
AXDD003	117.68	119	1.32	Incl.	1.08	0.18	16	0.14
AXDD003	123	124	1	Incl.	1.86	0.33	18	0.17
AXDD004	0	139.45	139.45	@	4.05	0.75	19	0.55
AXDD004	0	7	7	Incl.	7.49	1.33	18	1.03
AXDD004	0	5.17	5.17	Incl.	9.48	1.67	18	1.29
AXDD004	9	62.9	53.9	Incl.	5.44	1.00	19	0.79
AXDD004	11	12	1	Incl.	5.04	0.77	15	0.50

Page 7 of 14

HOLEID	FROM	ТО	INTERVAL	TYPE	TREO%	MREO%	NdPr:TREO	Nb ₂ O ₅ %
AXDD004	18	19	1	Incl.	3.41	0.63	18	0.49
AXDD004	21	22	1	Incl.	3.76	0.84	22	0.50
AXDD004	26	31	5	Incl.	4.97	0.91	18	0.49
AXDD004	26	27	1	Incl.	6.21	1.09	17	0.59
AXDD004	28	29	1	Incl.	5.66	0.97	17	0.53
AXDD004	32	40	8	Incl.	5.89	1.09	18	0.97
AXDD004	37.1	38.3	1.2	Incl.	7.65	1.50	19	1.45
AXDD004	39	40	1	Incl.	7.08	1.12	16	0.95
AXDD004	41.1	49.2	8.1	Incl.	11.41	1.98	18	0.83
AXDD004	48	49.2	1.2	Incl.	18.52	2.62	14	0.52
AXDD004	50	51	1	Incl.	3.55	0.81	22	1.38
AXDD004	52	62.9	10.9	Incl.	6.69	1.24	19	1.27
AXDD004	61.8	62.9	1.1	Incl.	8.17	1.36	17	1.13
AXDD004	63.5	103	39.5	Incl.	3.87	0.72	20	0.43
AXDD004	63.5	64	0.5	Incl.	3.21	0.64	20	0.27
AXDD004	64.55	65.55	1	Incl.	5.91	1.33	22	0.58
AXDD004	66.3	69	2.7	Incl.	10.55	1.58	15	0.31
AXDD004	69.9	73	3.1	Incl.	5.72	0.96	17	0.36
AXDD004	84	91	7	Incl.	4.70	0.87	19	0.71
AXDD004	85.5	86.67	1.17	Incl.	8.75	1.48	17	0.70
AXDD004	92	94.97	2.97	Incl.	4.35	0.84	19	0.66
AXDD004	97	100	3	Incl.	3.78	0.73	19	0.46
AXDD004	102	103	1	Incl.	4.19	0.78	19	0.24
AXDD004	109	126	17	Incl.	1.83	0.35	19	0.30
AXDD004	109	109.5	0.5	Incl.	4.58	0.99	22	0.31
AXDD004	128	134	6	Incl.	3.06	0.57	20	0.34
AXDD004	128	129	1	Incl.	8.42	1.27	15	0.57
AXDD004	130	131	1	Incl.	3.88	0.88	22	0.44
AXDD007	0	80.15	80.15	@	5.11	0.89	18	0.76
AXDD007	0	16	16	Incl.	3.47	0.73	21	0.48
AXDD007	2	4	2	Incl.	4.30	0.87	20	0.35
AXDD007	7	8	1	Incl.	3.25	0.73	22	0.44
AXDD007	8.5	12	3.5	Incl.	5.37	1.13	20	0.74
AXDD007	11	12	1	Incl.	7.24	1.52	20	0.74
AXDD007	13	14	1	Incl.	5.64	0.87	15	0.35
AXDD007	16.45	34.75	18.3	Incl.	4.50	0.77	18	0.40
AXDD007	16.45	17.25	0.8	Incl.	3.78	0.82	21	0.71
AXDD007	19.45	20.2	0.75	Incl.	3.88	0.64	17	0.59
AXDD007	21.3	23.3	2	Incl.	5.05	0.77	15	0.42

Page 8 of 14

HOLEID	FROM	ТО	INTERVAL	TYPE	TREO%	MREO%	NdPr:TREO	Nb ₂ O ₅ %
AXDD007	24	25	1	Incl.	3.58	0.58	16	0.26
AXDD007	26	28	2	Incl.	4.60	0.73	16	0.29
AXDD007	29	31	2	Incl.	7.41	1.12	15	0.36
AXDD007	32.25	34.75	2.5	Incl.	8.62	1.48	17	0.56
AXDD007	36.25	80.15	43.9	Incl.	6.18	1.04	18	1.05
AXDD007	36.25	38	1.75	Incl.	8.69	1.28	15	0.82
AXDD007	36.25	41.3	5.05	Incl.	6.20	1.02	17	0.50
AXDD007	42	43	1	Incl.	3.60	0.76	21	0.71
AXDD007	45	58.75	13.75	Incl.	8.86	1.47	17	1.35
AXDD007	49	50	1	Incl.	20.82	3.15	15	1.60
AXDD007	59	60	1	Incl.	3.04	0.58	19	0.37
AXDD007	63	77	14	Incl.	6.09	1.01	17	1.09
AXDD007	66	67.75	1.75	Incl.	9.19	1.65	18	1.45
AXDD007	70.75	73	2.25	Incl.	11.03	1.51	14	1.15
AXDD007	78.75	80.15	1.4	Incl.	5.74	0.98	17	1.39
AXDD014	0	82.55	82.55	@	3.90	0.76	20	0.59
AXDD014	0	8	8	Incl.	1.88	0.45	23	0.43
AXDD014	0.4	1	0.6	Incl.	3.21	0.83	25	0.49
AXDD014	10	14.5	4.5	Incl.	2.12	0.48	22	0.31
AXDD014	15.5	19	3.5	Incl.	1.19	0.27	22	0.23
AXDD014	21	25	4	Incl.	1.79	0.37	20	0.26
AXDD014	26	82.55	56.55	Incl.	4.97	0.94	19	0.72
AXDD014	26	27	1	Incl.	6.12	1.16	19	0.43
AXDD014	28	30	2	Incl.	3.83	0.69	18	0.52
AXDD014	31.1	41.85	10.75	Incl.	7.90	1.42	18	0.61
AXDD014	32.65	41.85	9.2	Incl.	8.34	1.47	18	0.64
AXDD014	44.15	53	8.85	Incl.	5.84	1.15	19	0.77
AXDD014	48	49	1	Incl.	6.00	1.13	19	0.56
AXDD014	49.65	52	2.35	Incl.	6.83	1.49	22	0.96
AXDD014	54	58	4	Incl.	4.55	0.87	19	0.75
AXDD014	61	63	2	Incl.	11.06	1.67	15	1.30
AXDD014	64	66.05	2.05	Incl.	6.21	1.23	20	0.69
AXDD014	67	70	3	Incl.	3.88	0.85	22	1.19
AXDD014	73.9	79	5.1	Incl.	4.43	0.85	19	0.75
AXDD018	0	81.45	81.45	@	4.52	0.84	19	0.56
AXDD018	0	12.35	12.35	Incl.	6.00	1.17	20	1.00
AXDD018	0	1.55	1.55	Incl.	3.28	0.67	20	0.59
AXDD018	2	4.55	2.55	Incl.	5.30	1.04	19	1.65
AXDD018	3	4	1	Incl.	6.10	1.17	19	2.92

HOLEID	FROM	ТО	INTERVAL	TYPE	TREO%	MREO%	NdPr:TREO	Nb ₂ O ₅ %
AXDD018	5	6	1	Incl.	3.60	0.80	21	0.44
AXDD018	6.6	12.35	5.75	Incl.	8.32	1.57	19	1.03
AXDD018	8	12	4	Incl.	9.93	1.80	18	1.16
AXDD018	13	79	66	Incl.	4.41	0.80	18	0.50
AXDD018	14	18	4	Incl.	6.04	1.04	17	0.78
AXDD018	19	21	2	Incl.	3.78	0.60	16	0.60
AXDD018	21.45	26	4.55	Incl.	8.87	1.40	16	0.78
AXDD018	27	30	3	Incl.	3.96	0.72	18	0.43
AXDD018	31	37	6	Incl.	4.11	0.78	19	0.60
AXDD018	35	36	1	Incl.	6.30	1.00	16	0.37
AXDD018	38	41	3	Incl.	4.57	0.93	20	0.50
AXDD018	42	51	9	Incl.	4.79	0.79	16	1.00
AXDD018	53	58	5	Incl.	4.60	0.94	20	0.29
AXDD018	55.95	57	1.05	Incl.	6.24	1.40	22	0.10
AXDD018	59	73	14	Incl.	4.97	0.95	19	0.25
AXDD018	61	63	2	Incl.	6.92	1.35	19	0.08
AXDD018	65	66	1	Incl.	8.70	1.61	18	0.05
AXDD018	71	71.7	0.7	Incl.	7.36	1.29	17	0.11
AXDD020	0	81.4	81.4	@	2.88	0.57	20	0.36
AXDD020	0	65	65	Incl.	3.04	0.60	20	0.39
AXDD020	0	1.75	1.75	Incl.	3.73	0.81	21	0.57
AXDD020	7	8	1	Incl.	3.17	0.60	19	0.37
AXDD020	10.75	13	2.25	Incl.	7.07	1.26	18	0.36
AXDD020	14	15	1	Incl.	3.97	0.77	19	0.34
AXDD020	16	20	4	Incl.	4.68	0.83	18	0.48
AXDD020	18	19	1	Incl.	6.01	1.01	17	0.33
AXDD020	23	24	1	Incl.	4.22	0.71	17	0.30
AXDD020	25	28	3	Incl.	5.14	0.91	18	0.61
AXDD020	28.75	34	5.25	Incl.	4.77	0.89	18	0.46
AXDD020	31	32	1	Incl.	6.64	1.17	17	0.55
AXDD020	41.45	44.85	3.4	Incl.	4.19	0.80	19	0.55
AXDD020	42.55	43	0.45	Incl.	7.71	1.42	18	0.54
AXDD020	54.25	55	0.75	Incl.	4.04	0.69	17	0.05
AXDD020	56.3	57	0.7	Incl.	3.08	0.49	16	0.62
AXDD020	58	59	1	Incl.	4.77	1.00	20	0.14
AXDD020	60	61	1	Incl.	3.78	0.73	19	0.12
AXDD020	62	62.75	0.75	Incl.	3.31	0.71	21	0.41
AXDD020	66	68.45	2.45	Incl.	3.75	0.69	18	0.17
AXDD020	66	68	2	Incl.	4.12	0.75	18	0.16

HOLEID	FROM	ТО	INTERVAL	TYPE	TREO%	MREO%	NdPr:TREO	Nb ₂ O ₅ %
AXDD020	72	81.4	9.4	Incl.	2.30	0.45	20	0.29
AXDD020	75	78.25	3.25	Incl.	3.67	0.68	18	0.41
AXDD020	81	81.4	0.4	Incl.	3.49	0.66	19	0.53

Table 3 – List of significant intercepts from diamond drilling (cut-off grade of $0.2\%\ Nb_2O_5$)

HOLEID	FROM	TO	INTERVAL	TYPE	Nb2O5%	TREO%	MREO%	NdPr:TREO
AXDD015	0.00	90.40	90.40	@	0.27	0.81	0.19	24
AXDD015	0	11.9	11.9	Incl.	0.67	2.77	0.61	22
AXDD015	8	10	2	Incl.	1.47	2.94	0.83	28
AXDD015	12.45	25	12.55	Incl.	0.54	0.98	0.25	24
AXDD015	13.4	14.5	1.1	Incl.	1.14	1.68	0.38	22
AXDD015	18.8	19.55	0.75	Incl.	1.02	1.27	0.31	24
AXDD015	26.75	27.4	0.65	Incl.	0.96	0.98	0.23	23
AXDD015	31.5	34	2.5	Incl.	0.36	0.80	0.23	27
AXDD015	48	49	1	Incl.	0.21	0.18	0.05	25
AXDD015	60.45	61.5	1.05	Incl.	0.30	0.42	0.10	24
AXDD015	68	69	1	Incl.	0.67	0.36	0.09	23
AXDD015	88	88.4	0.4	Incl.	0.23	2.03	0.76	37
AXDD019	0.00	82.75	82.75	@	0.50	1.10	0.27	25
AXDD019	0	15.4	15.4	Incl.	0.63	1.42	0.36	24
AXDD019	9.8	10.9	1.1	Incl.	1.61	1.76	0.49	27
AXDD019	12.25	13	0.75	Incl.	1.02	0.87	0.26	28
AXDD019	13.8	14.4	0.6	Incl.	1.04	1.32	0.33	24
AXDD019	16	44	28	Incl.	0.57	0.85	0.22	25
AXDD019	41.85	43	1.15	Incl.	1.90	1.17	0.32	26
AXDD019	45	53.85	8.85	Incl.	0.75	2.70	0.61	23
AXDD019	49	51	2	Incl.	1.61	2.07	0.50	24
AXDD019	54.5	55	0.5	Incl.	0.24	0.66	0.17	24
AXDD019	57	60	3	Incl.	0.36	0.66	0.16	24
AXDD019	60.55	63.6	3.05	Incl.	0.80	0.96	0.25	24
AXDD019	60.55	62	1.45	Incl.	1.15	1.27	0.33	25
AXDD019	64	65	1	Incl.	0.26	0.38	0.09	23
AXDD019	65.35	69.15	3.8	Incl.	0.30	0.27	0.08	27
AXDD019	74	75	1	Incl.	0.22	0.40	0.10	24
AXDD019	77	81.6	4.6	Incl.	0.30	0.31	0.08	26
AXDD019	82.4	82.75	0.35	Incl.	0.27	1.36	0.33	24
AXDD022	0.00	84.40	84.40	@	0.56	0.99	0.24	24
AXDD022	0	53.25	53.25	Incl.	0.76	1.34	0.32	24
AXDD022	9	10	1	Incl.	2.52	1.57	0.40	25

AXDD022	23.2	25.5	2.3	Incl.	1.45	1.73	0.41	23
AXDD022	28	28.9	0.9	Incl.	1.22	1.00	0.24	23
AXDD022	29.65	30.4	0.75	Incl.	1.39	1.08	0.27	24
AXDD022	37.9	39	1.1	Incl.	1.44	2.88	0.70	24
AXDD022	47.25	48	0.75	Incl.	1.83	1.54	0.39	25
AXDD022	54	62	8	Incl.	0.37	0.48	0.11	22
AXDD022	66	67	1	Incl.	0.29	0.22	0.05	23
AXDD022	74.15	76.25	2.1	Incl.	0.23	0.25	0.06	25
AXDD022	77	78	1	Incl.	0.26	0.22	0.05	24
AXDD022	83	84	1	Incl.	0.20	0.34	0.08	23
AXDD024	0.00	86.00	86.00	AT	0.66	0.98	0.21	23
AXDD024	0	23	23	Incl.	0.82	1.26	0.30	24
AXDD024	12	14	2	Incl.	2.66	0.87	0.21	24
AXDD024	15	17	2	Incl.	1.56	0.85	0.21	24
AXDD024	28	46	18	Incl.	0.51	0.50	0.13	25
AXDD024	47	56	9	Incl.	0.63	0.63	0.16	25
AXDD024	51	52	1	Incl.	1.49	1.13	0.30	25
AXDD024	56.85	61.2	4.35	Incl.	1.56	0.75	0.18	23
AXDD024	56.85	59	2.15	Incl.	2.83	1.13	0.28	24
AXDD024	58	59	1	Incl.	4.22	1.64	0.42	25
AXDD024	62.3	71.75	9.45	Incl.	1.17	2.64	0.46	20
AXDD024	67	70	3	Incl.	2.45	3.64	0.65	18
AXDD024	67	68	1	Incl.	4.17	2.10	0.44	20
AXDD024	73	75	2	Incl.	0.25	0.34	0.08	22
AXDD024	76	80	4	Incl.	0.53	0.55	0.11	20
AXDD024	85	86	1	Incl.	0.29	2.36	0.28	12

About the Araxá Project:

St George acquired 100% of the Araxá Project on 27 February 2025. Araxá is a de-risked, world-class rare earths and niobium project in Minas Gerais, Brazil, located adjacent to CBMM's world-leading niobium mining operations.

The region around the Araxá Project has a long history of commercial niobium production and provides access to infrastructure and a skilled workforce.

St George has negotiated government support for expedited project approvals and assembled a highly experienced in-country team and established relationships with key parties and authorities in Brazil to drive the Project through exploration work and development studies.

St George has been selected to participate in the Federal Government's MagBras Initiative – a program aimed at establishing an integrated and sustainable rare earth products supply chain including the production of permanent magnets entirely within Brazil – and has signed a cooperation agreement with

the State of Minas Gerais in October 2024 pursuant to which the State will assist in expediting permitting approvals for the Araxá Project.

On 1 April 2025, St George announced a maiden Mineral Resources Estimate (MRE) for the Project, which represents both a globally significant niobium and rare earths resource as shown in **Table 4** below:

Niobium - total resource:

41.2 Mt at 0.68% Nb₂O₅ (6,800ppm Nb₂O₅) comprising (at a cut-off of 0.2% Nb₂O₅):

Resource Classification	Million Tonnes (Mt)	Nb ₂ O ₅ (%)
Measured	1.90	1.19
Indicated	7.37	0.93
Inferred	31.93	0.59
Total	41.20	0.68

Rare earths – total resource:

40.6 Mt at 4.13% TREO (41,300ppm TREO) comprising (at a cut-off of 2% TREO):

Resource Classification	Million Tonnes (Mt)	TREO (%)	MREO (%)
Measured	1.90	5.44	1.04
Indicated	7.37	4.76	0.90
Inferred	31.37	3.90	0.74
Total	40.64	4.13	0.78

Authorised for release by the Board of St George Mining Limited.

John Prineas	Peter Klinger
Executive Chairman	Media and Investor Relations
St George Mining	Purple
+61 411 421 253	+61 411 251 540
john.prineas@stgm.com.au	pklinger@purple.au

Competent Person Statement – Mineral Resource Estimate

Mr. Beau Nicholls: The information in this ASX Release that relates to Mineral Resource Estimate and historical/foreign results is based upon, and fairly represents, information and supporting documentation reviewed and compiled by Mr. Beau Nicholls, a Competent Person who is a Fellow of The Australian Institute of Geoscientists. Mr Nicholls is the Principal Consultant of EM2 Ltd (Sahara), an independent consultancy engaged by St George Mining Limited for the review of historical data and preparation of the Mineral Resource Estimate for the Araxá Niobium & Rare Earth Project under the JORC guidelines of 2012. Mr Nicholls has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr. Leandro Silva: The information in this ASX Release that relates to Mineral Resource Estimate is based upon, and fairly represents, information and supporting documentation reviewed and compiled by Mr Leandro Silva, a Competent Person who is Member of The Australian Institute of Geoscientists. Mr Silva is the Consulting Geologist of EM2 Ltd (Sahara), an independent consultancy engaged by St George Mining Limited for the review of historical data and preparation of the Mineral Resource Estimate for the Araxá Niobium & Rare Earth Project under the JORC guidelines of 2012. Mr Silva has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves"

This ASX announcement contains information related to the following reports which are available on the Company's website at www.stgm.com.au:

1 April 2025 Maiden High-Grade Niobium and Rare Earth Resource Estimate for the Araxá Project, Brazil

The Company confirms that it is not aware of any new information or data that materially affects the Mineral Resource Estimates included in any original market announcements referred to in this report and that all material assumptions and technical parameters underpinning the Mineral Resource Estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Competent Person Statement – Exploration Results

The information in this ASX Release that relates to historical and foreign results is based upon, and fairly represents, information and supporting documentation reviewed by Mr. Carlos Silva, Senior Geologist employed by GE21 Consultoria Mineral and a Competent Person who is a Member of The Australian Institute of Geoscientists. GE21 is an independent consultancy engaged by St George Mining Limited for the review of historical exploration data. Mr Silva has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Competent Person Statement:

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves for the Araxá Project is based on information compiled by Mr Wanderly Basso, a Competent Person who is a Member of The Australasian Institute of Geoscientists. Mr Basso is employed by St George Mining Limited to provide technical advice on mineral projects, and he holds performance rights issued by the Company.

Mr Basso has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Basso consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements:

This announcement includes forward-looking statements that are only predictions and are subject to known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of St George, the directors and the Company's management. Such forward-looking statements are not guarantees of future performance.

Examples of forward-looking statements used in this announcement include use of the words 'may', 'could', believes', estimates', targets', 'expects', or 'intends' and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of the announcement, are expected to take place.

Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements in the announcement as they speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, St George does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

This announcement has been prepared by St George Mining Limited and contains background Information about St George Mining Limited current at the date of this announcement. The announcement is in summary form and does not purport to be all inclusive or complete. Recipients should not rely upon it as advice for investment purposes, as it does not take into account your investment objectives, financial position or needs. These factors should be considered, with or without professional advice, when deciding if an investment is appropriate.

The announcement is for information purposes only. Neither this announcement nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. The announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply to their own jurisdiction as a failure to do so may result in a violation of securities laws in such jurisdiction.

This announcement does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this announcement are not intended to represent recommendations of particular investments to particular person.

Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. To the extent permitted by law, no responsibility for any loss arising in any way (including by way of negligence) from anyone acting or refraining from acting as a result of this material is accepted by St George Mining Limited (including any of its related bodies corporate), its officers, employees, agents and advisers.

- Ends -

The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary				
Sampling	Nature and quality of sampling (eg cut	Drilling programme completed by Diamond (DD) Drilling				
techniques	channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Diamond Core Sampling: The sections of the core that are selected for assaying are marked up and then recorded on a sample sheet for cutting and sampling at the certified assay laboratory. Samples of HQ, NQ2, HTW or NTW core are cut just to the right of the orientation line where available, using a diamond core saw, with half core sampled lengthways for assay.				
	illinung the broad meaning of sampling.	Appropriate QAQC samples (standards, blanks and duplicates) are inserted into the sequences as per industry best practice for all samples collected in the different drilling methods.				
	Include reference to measures taken to ensure	Diamond Core Sampling: For diamond core samples, blank samples are				
	calibration of any measurement tools or systems used.	inserted in the first position of the batch and every 20th sample afte that, a duplicate sample is taken every 20th sample. A certified sample standard for niobium and REE is also added according to geology, but at no more than 1:20 samples. Core recovery calculations are made through a reconciliation of the actual core and the driller's records.				
		For all drilling methods, the number of samples per batch varies between 30 to 50 samples.				
		A percentage of the samples will be selected to be assayed by the same method by a different laboratory for umpire checks.				
		The drill-hole collar locations are recorded using a handheld GPS and after completion the final drill hole location will be recorded using a high-precision RTX station which as expected accuracy of +/- 4cm.				
		Geological logging of core is completed at site with core being stored for future reference.				
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg	Diamond Core Sampling: Diamond core (both HTW, NTW, HQ and NQ2) are half-core sampled to geological boundaries with an average sample size of 1 meter. A minimum size of 20 cm and maximum of 1.2m. 95% of samples are expected to be less or equal than 1 metre.				
	'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised	The samples are prepared by the laboratory according to the following procedure:				
to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Whole samples drying and weighing, crushing of sample to -2mm followed by homogenization and splitting to a 250g sub-sample. Samples pulverization to 85% passing 75 micron and splitting of pulverized material to 50-gram pulp.					
	submarine nodules) may warrant disclosure of	Elements for all suites go through the following analytical method:				
	Elements are analysed by ALS Laboratories using Lithium Metaborate fusion and an ICP-MS/AES finish. These elements are: La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Lu2O3, Ho2O3, Er2O3, Y2O3, Yb, Tm2O3, Nb2O5, Hf, Rb, Sn, Ta, Th, U, V, W, Zr, Sc, SiO2, Na2O, P2O5, Al2O3, K2O, SrO, Fe2O3, Cr2O3, BaO, CaO, TiO2, MgO, MnO and LOI.					
		Elements are analysed by SGS Laboratories using Lithium Metaborate fusion and an ICP-MS/XRF finish. These elements are: La2O3, CeO2,				

Criteria	JORC Code explanation	Commentary
		Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Lu2O3, Ho2O3, Er2O3, Y2O3, Yb, Tm2O3, Nb2O5, Hf, Rb, Sn, Ta, Th, U, V, W, Zr, Sc, SiO2, Na2O, P2O5, Al2O3, K2O, SrO, Fe2O3, Cr2O3, BaO, CaO, TiO2, MgO, MnO and LOI.
		Due to the high-grade nature of the deposit, assays results that are reported above the upper detection limit for the methods above mentioned will be subject to determination by XRF finish.
		Prior to be analysed by the methods above mentioned, the samples will be analysed using a Sciapps X555 portable XRF, the results obtained from the portable XRF analyses are indicative only and will only be used as preliminary indication of mineralisation occurrences and for the purposes of geological interpretation.
Drilling	Drill type (eg core, reverse circulation, open-	Drilling programme were be completed by Diamond Drilling (DD).
techniques	hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond Core Sampling: The diamond holes are drilled from surface through the regolith to planned depth using a either a HTW, NTW, HQ or NQ2 diameter, subject to ground and geological conditions, tripletube core barrels will be used whenever possible to preserve sample integrity.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond Core Sampling: Diamond core recoveries are recorded during drilling and reconciled during the core processing and geological logging. The core length recovered is measured for each run and recorded which is used to calculate core recovery as a percentage
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Diamond Drilling: Measures taken to maximise core recovery include using appropriate core diameter and shorter barrel length through the weathered zone. Primary locations for core loss in fresh rock are on geological contacts and structural zones, and drill techniques are adjusted accordingly, and if possible, these zones are predicted from the geological modelling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have been identified that could introduce bias in the sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Logging of samples records lithology, mineralogy, mineralisation, alteration, structures (when possible), weathering, colour and other noticeable features to a level of detail to support appropriate Mineral Resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded. All core trays are photographed in sequence.
	The total length and percentage of the relevant intersections logged.	All drill holes are geologically logged in full. The data relating to the elements analysed is later used to determine further information regarding the detailed rock composition.
		Detailed litho-geochemical information is collected by the portable XRF unit to help with lithological identification and geological interpretation.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond core are drilled with HTW, HQ and NQ2 size and sampled as complete half core to produce a bulk sample for analysis. Intervals selected varied from $0.25-1.25 \mathrm{m}$ (maximum) where 5% of samples are expected to be less or equal than 1 metre. The HTW, HQ and NQ2 core is cut in half length ways using a diamond core saw. All samples are collected from the same side of the core where practicable.

Criteria	JORC Code explanation	Commentary
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Drilling was diamond core.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Assay preparation procedures follow a standard protocol which include drying and weighing of whole sample, samples are then crushed to -2mm size. Sample homogenization and splitting to a 250g sub-sample. Pulverization to 85% passing 75 micron and splitting of pulverized material to 50-gram pulp.
	Quality control procedures adopted for all sub-sampling stages to maximise	Quality control procedures include submission of Certified Reference Materials (standards), duplicates and blanks
	representivity of samples.	Diamond Core Sampling: Drill core is cut in half lengthways and the total half-core submitted as the sample. This meets industry standards where 50% of the total sample taken from the diamond core is submitted. QC procedures maximise representivity of diamond core and involve the use of certified reference material as assay standards, along with blanks and duplicates with each sample batch.
		QAQC results are routinely reviewed to identify and resolve any issues, eventual failed batches are re-analysed.
		A percentage of the global samples are selected to be assayed by the same method by a different laboratory for umpire checks.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Diamond drilling: Duplicate samples comprise half core samples for Diamond Core.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent type and style of mineralisation and associated geology based on the deposit style (supergene deposit), the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	XRF: A handheld XRF instrument (Sciapps X555) is used to systematically analyse the drill core, auger and RC sample piles onsite. One reading is taken per half-metre, however for any core samples with expected mineralisation then multiple samples are taken at set intervals. The instruments are serviced and calibrated at least once a year following the manufacturer protocol. Field calibration of the XRF instrument using standards is periodically performed (usually daily).
		The handheld XRF results are only used for preliminary assessment and reporting of element compositions, prior to the receipt of assay results from the certified laboratory.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks, umpire assays and pulp duplicates as part of in-house procedures.
		The Company also submits a suite of CRMs, blanks, umpire assays and selects appropriate samples for duplicates. Company's QAQC protocols are expected to be collected at an overall rate of 16%. Blank samples represent 4% of the database; duplicates, 4%; umpire checks, 4%; and certified reference materials, for niobium and REE, has an expected 4% insertion rate in the program.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Geologist.
	The use of twinned holes.	No twinned holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals.
		For geological analysis recognised calculations may be used to demonstrate mineralisation potential for one or more elements of interest, such as demonstrate below:
		TREO (Total Rare Earth Oxides) calculations include the summation of the following elements: La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Lu2O3 + Ho2O3 + Er2O3 + Y2O3 + Yb2O3
		MREO (Magnetic Rare Earth Oxides) calculations include the summation of the following elements: Pr6O11+ Nd2O3+ Tb4O7+ Dy2O3
		HREO (Heavy Rare Earth Oxides) calculations include the summation of the following elements: Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Lu2O3 + Ho2O3 + Er2O3 + Y2O3 + Yb2O3
		NdPr:TREO (NdPr Ratio) calculation include the summation of Pr6O11 + Nd2O3 divided by TREO (Total Rare Earth Oxides) which is the summation of following elements: La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Lu2O3 + Ho2O3 + Er2O3 + Y2O3 + Yb2O3
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill holes have been located and pegged using a Handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. Upon completion of drilling the holes were recorded using a high-precision RTX Trimble Catalyst DA2 GNSS station which as expected accuracy of +/- 4cm.
		Downhole surveys are conducted using a downhole Gyro with reading of 5m intervals after drilling is complete to record deviations of the hole from the planned dip and azimuth.
	Specification of the grid system used.	The coordinates were provided in following format: SIRGAS 2000 datum - georeferenced to spindle 23S.
	Quality and adequacy of topographic control.	Elevation data are acquired using a RTX Trimble Catalyst DA2 GNSS station at individual collar locations and entered in a central database. A topographic surface will be created using this data and additional topographic survey at later stage.
Data spacing and	Data spacing for reporting of Exploration Results.	Drill hole spacing has been designed to achieve the level desired for exploratory work, aimed at identifying new areas of mineralisation.
distribution		Hole spacing varies but an average of 40-150m distance is the most common.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Drilling conducted to date indicates that the mineralised zone remains open both at depth and laterally, highlighting the potential for resource expansion. Ongoing drilling aims to update and increase the current resource base, supporting the definition of Mineral Resources and

Criteria	JORC Code explanation	Commentary
		Reserves in accordance with the classification criteria of the 2012 JORC Code.
	Whether sample compositing has been applied.	No compositing has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation is flat lying and occurs within the saprolite/clay zone of a deeply developed regolith (reflecting topography and weathering). Vertical sampling from the drill holes is therefore appropriate.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation-based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is data. To date, no external audits have been completed on the planned drilling programme.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Araxa Project is comprised of three granted permits held by Itafos Araxá Mineracao E Fertilizantes S.A ("Itafos Araxá"), which has been acquired 100% by St George. Tenement 831.972/1985 is an application for a mining concession that is progressing through the application process. Further submissions to ANM (the relevant mining authority) are required to finalise the application including environmental and geotechnical studies. Additional information may also be requested by ANM. There is no certainty that the application will be granted or granted on conditions that are acceptable. Tenements 832.150/1989 (Exploration Licence) and 831.436/1988 (Application for Mining Concession) are subject to renewal and extension applications to ANM (the relevant mining authority). Additional information may be requested by ANM to complete the process for renewal or extension. There is no certainty that the renewal and extension requests will be granted or granted on conditions that are acceptable. Some areas within the project site are classified as legal reserve or APP. Further exploration work (including drilling), mining activities and any other suppression of vegetation in these areas will require certain submissions and undertakings to the relevant authorities and the approval of those authorities. There is no certainty that approvals will be granted in the future or granted on conditions that are acceptable. Some areas within the project site are a listing and preservation zone by the municipality, according to the current master plan, recognized by Brazil and the State of Minas Gerais, according to the Geoenvironmental Study of Hydromineral Sources/Araxá Project conducted by CPRM/Geological Service of Brazil. This classification is designed to protect water resources and vegetation within the designated area. Approvals are required from the relevant authorities

Criteria	JORC Code explanation	Commentary
		to conduct exploration and mining activities in these areas, presenting a significant environmental management risk to the project. There is no certainty that approvals will be granted in the future or granted on conditions that are acceptable.
		 A royalty is payable to Extramil, a former owner of the project. The royalty is a specified percentage of the revenue on Net Smelter Returns (NSR). The following percentages apply:
		• 3.5% NSR on phosphate;
		 3.0% - 10.5% NSR on REEs and niobium, on a sliding scale according to the actual Internal Rate of Return of the Araxá Project, more specifically:
		• 3.0% NSR for IRR =<25%;
		• 4.5% NSR for IRR =>25% < 30%;
		• 6.0% NSR for IRR =>30% < 50%;
		• 7.5% NSR for IRR =>50% < 70%; or
		• 10.5% NSR for IRR => 90%.
		 A Government royalty is also payable which can range between 0.2% to 3% of revenue depending on the product produced.
		 The land on which the project tenements are situated is owned either by the State of Minas Gerais, CBMM or another third party. The approval of the landowner is required to access the project area. Access arrangements for the project have previously been agreed but there is no certainty that access arrangements will be agreed in the future or the timeframe in which such arrangements can be agreed.
Exploration done by othe parties	Acknowledgment and appraisal of exploration by other parties. r	 Historical exploration within the area of the Araxa Project is known to have occurred since 1965. Known historical exploration includes:
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1965 to 1974: Exploration by the Brazilian government under the auspices of the

Criteria	JORC Code explanation	Commentary
		DNPM and by CBMM and Canopus Holding SA (Canopus). Exploration included the drilling and sampling of 24 diamond boreholes and the excavation and sampling of 59 pits.
		2004 to 2008: Exploration was conducted by Extramil and Companhia Industrial Fluminense (CIF) within the Araxá Project boundary. Exploration included the drilling and sampling of 11 diamond boreholes and 31 auger holes.
		2011 to 2012: Exploration By Itafos (previously called MBAC Fertilizer Corp) which included mapping, topographical surveys, 36 auger drillholes and 67 diamond core drillholes. Itafos also completed preliminary metallurgical testwork and resource estimates.
Geology	Deposit type, geological setting and style of mineralisation.	 St George is targeting Carbonatite hosted supergene style Niobium, +/- Rare Earth mineralisation at the Araxa project.
		This is based on geological interpretations and existing operating mines within the vicinity of the Barreiro Carbonatite complex.
		 The project lies within the Barreiro Carbonatite complex. The host mineral for niobium at Araxá is pyrochlore, and the host mineral for REEs is monazite.
		 This complex is known to host high grade supergene (superficial) niobium, rare-earths and phosphate with two existing mines currently operating within the intrusion since as early as the 1950's.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information	Drill hole details are shown in the ASX Release.
momadon	for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	 For historical drill holes, see Tables 1 and 2 in the ASX Release dated 6 August 2024. For methodology of new drilling, see Section 1 of this JORC Table.
	 dip and azimuth of the hole down hole length and interception depth hole length. 	

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 For historical drill holes, see Tables 1 and 2 in the ASX Release dated 6 August 2024. For methodology of new drilling, see Section 1 of this JORC Table.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 For historical drill holes, see Tables 1 and 2 in the ASX Release dated 6 August 2024. For methodology of new drilling, see Section 1 of this JORC Table.
iongc	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	A prospect location map and section are shown in the body of the ASX Release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Details of new exploration results are within the ASX Release. For historical drill holes, see Tables 1 and 2 in the ASX Release dated 6 August 2024. For methodology of new drilling, see Section 1 of this JORC Table.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 A discussion of the new exploration results is in the ASX Release. For historical drill holes, see our ASX Release dated 6 August 2024.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A discussion of further exploration work is contained in the body of the ASX Release. Further exploration will be planned based on ongoing drill results, geophysical surveys, metallurgical testwork results and geological assessment of prospectivity.